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ABSTRACT Polymerization ratchets formed by the assembly
of actin filaments and microtubules are possibly the simplest
realizations of biological thermal ratchets. A variety of experi-
mental evidence exists that significant forces are generated by
these processes, but quantitative studies lag far behind similar
studies for molecular motors such as kinesin and myosin. Here
we present a discussion of the theory of polymerization ratch-
ets as well as experimental techniques used in our laboratory for
the study of forces generated by single growing microtubules.
Data obtained with these techniques provide us with valuable in-
formation that may eventually allow us to distinguish between
different models for the growth of microtubules.

PACS 87.16.Ka; 87.15.Rn

1 Introduction

In biological systems, thermal energies are similar
in magnitude to interaction energies between macromolecules
and the quanta of energy available from the burning of fuel
molecules such as ATP (adenosine tri-phosphate). Thermal
fluctuations therefore have a profound effect on the struc-
ture and dynamics of proteins. It is tempting to speculate on
the possibility that nature has found mechanisms to use the
energy available from thermal fluctuations and bias it into uni-
directed motion or work using a ratchet mechanism. Brown-
ian or thermal ratchet models have been proposed to explain
the motion of molecular motors such as kinesin, myosin, the
ATP rotary motor, and ion pumps, all described elsewhere in
this volume. As a consequence of the second law of thermo-
dynamics, an energy source has to be available in addition
to thermal fluctuations in order for a ratchet mechanism to
perform work. In the original thermal ratchet proposed by
Feynman, this energy source was a thermal gradient [1]. In bi-
ological systems, however, temperature gradients cannot be
maintained easily and energy in these systems is derived from
chemical bonds (stored in molecules like ATP) or the non-
covalent binding energy between proteins.
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2 The polymerization ratchet

A fairly straightforward version of a biological
thermal ratchet is the polymerization ratchet formed by so-
called cytoskeletal proteins that self-assemble into linear fil-
aments (see Fig. 1) [2–4]. The free energy available from the
addition of a protein to a growing filament is available for me-
chanical work provided a mechanism is present to convert one
into the other. In Fig. 1a one imagines that assembly takes
place in contact with a ‘barrier’ on which a load is applied. In
the cell, this load may be the stiffness of a membrane or the
(viscous) drag on an intracellular macroscopic object being
pushed forward by the assembling filament. Insertion of new
subunits takes place at the contact point between the growing
filament and the barrier. In the absence of thermal fluctuations
there is no space between these two objects and proteins are
physically prevented from attaching to the filament (Fig. 1a,
top). Thermal fluctuations (in the form of diffusion of the
barrier) create transient gaps that allow for the insertion and
assembly of new subunits (Fig. 1a, middle). After assembly
of a new subunit, the barrier can no longer diffuse back to
its original location and has thus been ‘pushed’ forward by
the assembling filament against the applied load (Fig. 1a, bot-
tom). There is also a probability that subunits detach, which in
this picture is independent of the presence of the barrier. The
amount of work performed per assembling subunit is equal to
the product of the subunit size and the load, which has a max-
imum equal to the assembly free energy [5]. The maximum
forces one may expect are in the several piconewton range,
since binding energies are on the order of several kBT and pro-
teins are a few nanometers in size (one kBT corresponds to
4.1 pN nm at room temperature).

In practice, biological polymerization ratchets are more
complicated than suggested in Fig. 1. Actin filaments, for
instance, consist of two assembling protofilaments instead
of one and microtubules consist of 13 protofilaments form-
ing a hollow tube [6]. Despite the fact that this complicates
the modeling aspects of the polymerization ratchet, it does
not change the fact that forces generated by assembling fila-
ments are real, and that they compete with forces generated
by molecular motors in cellular functioning. The quantitative
study of these forces and the understanding of the underlying
molecular mechanisms are therefore not only of interest for
physicists interested in experimental manifestations of ther-
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FIGURE 1 Force generation by linear filament assembly. a Schematic rep-
resentation of the single-filament polymerization ratchet. A barrier (diffusion
constant D) is pushed against a growing filament with force F (top). Ther-
mal fluctuations occasionally create enough space to allow for the insertion of
new subunits (size δ) at the contact point with rate kon (middle), thereby effec-
tively pushing the object forward (bottom). At all times subunits detach with
rate koff. b The free-energy difference ∆G between the off- and on-states of
a subunit drives the polymerization reaction. The activation energy G∗ affects
the absolute value of the on- and off-rates, but not their ratio

mal ratchets, but are also important to biologists interested in
the role and regulatory principles of forces involved in various
forms of cellular motility.

In this paper we start by presenting the equations that de-
scribe the single-filament polymerization ratchet described
above. After a brief introduction to the biology of cytoskeletal
filaments, we then focus on experiments with single grow-
ing microtubules in vitro [7], and discuss the specific models
available for this system [8–10].

3 The single-filament model

In the ratchet model described above, the rate at
which new subunits manage to attach is in principle a func-
tion of the magnitude of the load, F, and the time scale
of relevant positional fluctuations of the barrier (determined
by the diffusion constant D of the barrier and the size δ of
a protein subunit). When diffusion of the barrier over dis-
tances of order δ is fast compared to the time between sub-
sequent subunit additions, the diffusion constant is no longer

of importance [2]. The rate of assembly is then simply the
(concentration-dependent) bare rate in the absence of any
force or barrier, given by kon, multiplied by the probability of
opening a gap large enough for a new subunit to insert. This
probability depends on the energy associated with moving
the load F over a distance δ and is given by exp(−Fδ/kBT ),
where kB is Boltzmann’s constant and T is the absolute tem-
perature. In this simplest case the velocity of polymerization
in the presence of a load is given by

V(F) = δ
(
kone−Fδ/kBT − koff

)
, (1)

where koff is the rate of disassembly.
The stall force, which is defined as the force needed to

bring the growth velocity to zero, is given by

Fstall = kBT

δ
ln

kon

koff
. (2)

This last result can of course also be predicted from simple
thermodynamic arguments [11]. Figure 1b shows schemat-
ically the free-energy difference ∆G between the on- and
off-states of a subunit as well as the activation barrier G∗ for
transitions between the two. The absolute values of the on-
and off-rates depend on the activation energy, but the ratio
kon/koff does not, and is simply given by exp(∆G/kBT ). The
amount of work per assembling subunit that is needed to bal-
ance the reaction is thus given by

Fstallδ = ∆G = kBT ln
kon

koff
. (3)

These arguments also predict the ratio between the rates of as-
sembly and disassembly at smaller forces. In the presence of
force, the gain in free energy due to assembly of a subunit is re-
duced by the amount of work performed to ∆G ′ = ∆G − Fδ,
which gives

kon

koff
(F) = e(∆G−Fδ)/kBT = kon

koff
(0)e−Fδ/kBT . (4)

This formula gives no information about the absolute effect of
force on the on- and off-rates (for this, additional information
on the effect of force on the activation energy G∗ is needed).
The result is however consistent with the ratchet model (1),
where it is implicitly assumed that the rate of disassembly
is unaffected by the load. If no such assumptions are made,
a more general form of the force–velocity curve predicted by
thermodynamic arguments is given by

V(F) = δ
(
kone−qFδ/kB T − koff e(1−q)Fδ/kBT )

, (5)

where the value of q depends on how much the off-rate is af-
fected by the force relative to the on-rate.

4 Force generation by cytoskeletal filaments

The mechanical framework (cytoskeleton) of
higher-order (eukaryotic) cells consists of three types of pro-
tein filaments: actin filaments, intermediate filaments, and mi-
crotubules [6]. The assembly or polymerization of both actin
filaments and microtubules has been implicated in cellular
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force generation processes. (Note that both these filaments are
also known to serve as tracks for motor proteins, where they
play a more passive role in the generation of force [12].) Ex-
amples are: the pushing forward of membranes by polymeriz-
ing actin filaments in the leading edge of crawling cells [13];
the propulsion of Listeria bacteria through their host cell,
again by polymerization of actin filaments [14, 15]; and the
motion of chromosomes by the assembly and disassembly of
microtubules during the process of cell division [16]. Focus-
ing on this last example, Fig. 2 shows a schematic view of
the structure of an individual microtubule [17] as well as the
arrangement of microtubules in contact with chromosomes
in a dividing cell [18]. Individual microtubules consist of 13
protofilaments forming a hollow tube, assembled from tubu-
lin protein dimers. Microtubules in the mitotic spindle are
nucleated by two organelles called centrosomes that position
on opposite sides of the chromosomes. These microtubules
are by no means static structures. If one focuses on a single
microtubule, one observes that periods of net assembly (at

a

b
FIGURE 2 a Schematic representation of the structure and assembly dy-
namics of microtubules (adapted from [17]). Thirteen linear protofilaments
built from tubulin protein dimers form a hollow tube of 25-nm diameter.
Assembling tubulin subunits have a bound GTP molecule (guanosine tri-
phosphate) that is hydrolyzed to GDP (guanosine di-phosphate) upon incor-
poration into the microtubule. When GDP-tubulin is exposed at the end, the
microtubule switches to a state of rapid disassembly. The molecular details
of this switch (termed a catastrophe) as well as the reverse process (a rescue)
are still poorly understood. b Schematic representation of the mitotic spindle,
emphasizing the connection between microtubule ends and chromosomes

typical rates of several micrometers per minute) are randomly
alternated by periods of somewhat faster net disassembly. The
balance between kon and koff radically changes when a micro-
tubule switches from net growth to net shrinkage ( a catastro-
phe) or vice versa (a rescue). This process, termed dynamic
instability, depends on the hydrolysis of associated GTP (en-
ergy) molecules (Fig. 2a), is crucial for the length control of
the microtubules, and is heavily regulated by the cells’ bio-
chemical machinery [17]. The dynamic ends of microtubules
attach to specialized regions of the chromosomes, called kine-
tochores [19], in such a way that assembly and disassembly
continues to take place [20]. It is believed that during periods
of net assembly and net disassembly both pushing and pulling
forces are generated on the chromosomes [16].

Several in vitro experiments have demonstrated the force-
generating capabilities of cytoskeletal filaments. Growing mi-
crotubules are able to deform artificial lipid bilayers [21, 22]
and pull tubules from membranes in cell extracts [23]. Shrink-
ing microtubules have been shown to generate force on ob-
jects attached to their end [24]. Although in vivo it is very
difficult to distinguish the role of polymerization forces from
contributions by motor proteins, growing microtubules in for
example yeast cells have clearly been shown to be able to
deform themselves [25]. Actin polymerization can drive the
propulsion of Listeria bacteria and even protein-coated mi-
crospheres in cellular extracts as well as appropriate mix-
tures of purified components [14, 15]. In these systems dense
meshworks (‘comet tails’) of actin filaments are formed that
drive motility in a way similar to what has been proposed for
the propulsion of the leading edge of crawling cells. Several
models have been put forward to explain the forces generated
by such a collection of assembling filaments, some of which
are based on a ratchet mechanism [26–28].

5 Experiments on single microtubules

In our group we developed an experimental set-up
using lithography techniques that allows us to study, quanti-
tatively, the forces generated by single growing microtubules.
Figure 3a shows schematically our set-up. Short pieces of
stabilized microtubules are biochemically attached to a glass
substrate. On this substrate, lines (15-µm wide, 2-µm high)
of silicon monoxide are deposited that serve as barriers for
growing microtubules. When tubulin proteins are added at
sufficiently high temperature (15–35 ◦C) and concentration
(a few mg/ml) [29], microtubules grow from the templates,
some of which encounter the deposited barriers. An import-
ant technical detail of these barriers is that we create a small
‘undercut’ by briefly etching the substrates in HF. These un-
dercuts force the microtubule ends to stay in the focal plane of
the microscope and prevent them from sliding upwards after
reaching the barrier.

When microtubules hit the barrier they generally continue
to grow. To accommodate the increase in length two things
can happen: either the elongating microtubule end slides lat-
erally along the barrier, giving rise to a modest deflection of
the microtubule, or the microtubule end is hindered in this
lateral motion (by an encountered irregularity in the barrier
profile), resulting in a more dramatic buckling of the micro-
tubule with its growing end pivoting around a fixed contact
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FIGURE 3 Schematic representation of two
in vitro experimental set-ups that are used in
our laboratory to study force generation by sin-
gle growing microtubules. a A short piece of
stabilized microtubule (template) is attached
through a biotin–streptavidin linkage to the
surface of a microscope coverslip. Barriers
(2-µm high, 15-µm wide) of SiO are vapor-
deposited on this coverslip and a small undercut
is created using HF etching. The electron mi-
crograph shows the profile of such a barrier.
Microtubules that grow from the template hit
the barrier and buckle as a consequence of
the force generated by the assembly process
(see Fig. 4a). b Alternatively, two micron-sized
beads are attached to the template and held in
two optical traps. The traps are used to orient
the growth of the microtubule in the direction
of a rigid barrier and to measure directly the
force generated by the growth of the micro-
tubule (see Fig. 4c)

c

b
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FIGURE 4 a Time sequence of a buckling microtubule as observed by
video-enhanced DIC (Differential Interference Contrast) microscopy (see
Fig. 3a) [35]. At time zero growth is initiated by a template. After reaching
the barrier on the right, the microtubule continues to grow and buckles. Bar is
5 µm. b Analysis of the buckling shapes in a allows us to determine the force
and the length of the microtubule as a function of time. Under the conditions
used here a free microtubule grows at approximately 2.5 µm/min. c Prelim-
inary results obtained with the trapping technique. A long microtubule held
by two beads in two traps reaches the barrier, continues to grow, and buck-
les. Tracking of the position of the beads with nanometer resolution allows
us to measure the force on the microtubule directly and to compare it to the
force derived from the buckling shape. The distance between the barrier (on
the right) and the closest bead is 14.5 µm

point with the barrier (see Fig. 4a). In this last case the elastic
restoring force of the buckled microtubule puts a significant
load on the growth of the microtubule, directly affecting the
further growth of the filament. Using image analysis and fit-
ting procedures, the shape of the growing microtubule can be
related to both the magnitude and the direction of the force
acting on the microtubule end, provided an independent meas-
urement of the flexural rigidity is available [30]. At the same
time the increase in microtubule length and thus the growth
velocity can be derived from these fits (Fig. 4b).

Note that compared to the situation in Fig. 1, it is in this
case not the barrier that is fluctuating but the position of the
assembling filament end itself. In addition the load is not
applied externally, but caused by the elastic deformation of
the filament itself. This however does not change the ratchet
behavior, as long as the fluctuations in the gap size are suffi-
ciently fast and the applied load is not itself dependent on the
gap size (an example of a gap-dependent force is given by the
elastic Brownian ratchet discussed in [26]). Sufficiently fast
in this context means that diffusion over nanometer distances
should be faster than the assembly rate of a subunit (on the
order of 50 s−1 for microtubules in vitro).

With this ‘buckling’ technique questions can be answered
about the effect of force on the growth velocity of the mi-
crotubule [7], to be compared with force–velocity curves pre-
dicted by various growth models (see below). Also, the ef-
fect of force on the catastrophe frequency (the probability
to switch from growing to shrinking) can be studied [31].
The parameter that cannot be measured directly is the stall
force. Due to the geometry of the experiment the force on the
microtubule end never increases after the buckling of the mi-
crotubule has started, and in fact decreases during the course
of the experiment (due to the strong dependence of the crit-
ical buckling force on the filament length: Fc ∼ L−2 [30]).
Microtubules that are attached relatively close to the barrier
stop growing as soon as they encounter the barrier, apparently
because the force needed to overcome their critical buck-
ling force is too large. In these cases we have no direct way
of measuring the force applied (although estimates can be
made). As the stall force may turn out to be an important pa-
rameter in distinguishing between different growth models
we designed a second experimental set-up based on optical
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tweezers techniques (see Fig. 3b). In this set-up the micro-
tubule template is attached to two micron-sized silica spheres.
These beads are each held in an optical trap orienting the
growth direction of the microtubule towards a barrier similar
to the one used in the previous experiment. In this case the
distance to the barrier should ideally be chosen such that the
force needed to buckle the microtubule is larger than the ex-
pected stall force. In response to the growth of the microtubule
the beads will move with respect to the centers of the optical
traps, thereby linearly increasing the force on the growing mi-
crotubule end until growth stops. An independent calibration
of the trap stiffness then gives a direct measure of the force ap-
plied [32]. Preliminary results of this experiment (with long,
buckling microtubules, see Fig. 4c) indicate that forces act-
ing on the beads are indeed consistent with the forces derived
from the buckling shapes of the microtubules.

6 Ratchet models for growing microtubules

Fig. 5 shows the force–velocity data for micro-
tubules published so far, obtained with the buckling tech-
nique. One should take care in comparing these experimental
results with the simple Brownian ratchet model described
above. Even though single growing microtubules provide
in our opinion the simplest experimental model system so
far (given the lack of experiments with individual actin fil-
aments and the more complex structure of the actin comet
tails produced by Listeria), they represent by no means the
simplest possible example of a polymerization ratchet. This
would consist of a single linear filament as sketched in
Fig. 1a, whereas microtubules consist of 13 laterally con-
nected protofilaments forming a hollow tube. The geometrical
details of the growth process of microtubules are not well
known. In addition, there is the possibility that the hydrolysis
of GTP, responsible for the occasional switching to a shrink-
ing state, should be taken into account to understand the
response of the growth process to force. In this case the stall
force may no longer be simply connected to the free energy
associated with tubulin assembly.

Given what is known about the structure of microtubules,
it is tempting to try to include the geometrical details of

FIGURE 5 Force–velocity curve of microtubule growth derived from ex-
periments similar to Fig. 4a [7]. The solid line indicates the result from
a simulation of a ratchet model that assumes 13 independently growing par-
allel filaments [8]. This fit is relatively insensitive to the only free parameter
in this model, the stall force (arbitrarily chosen to be 18.5 pN in this case) [9]

a growing microtubule into a thermal ratchet model. A sim-
plistic generalization of the original ratchet model describing
the growth process of a polymer consisting of two filaments
(as is the case for actin) certainly did not fit the available
data [2, 7]. In this case it was assumed that the size of the
gap needed to insert each new subunit was equal to the added
microtubule length per dimer: δ/n, where n is the number
of filaments in the polymer. Mogilner and Oster therefore
generalized the ratchet model described above in a different
way [8]. They assumed 13 laterally connected, independently
growing ratchets, initially arranged as a staircase with subse-
quent shifts equal to one-thirteenth of the subunit size, with
the longest filament in contact with the barrier at any time.
Growth of any particular filament requires a fluctuation of the
barrier large enough for that filament to insert a new subunit,
which thus becomes a function of the distance of the end of
that filament to the barrier. Through numerical solutions as
well as simulations of this model the steady-state distribution
of filament–barrier distances can be determined as a func-
tion of applied force, and with this the average growth rate
can be calculated. Even though this model makes a lot of
implicit assumptions, the outcome fits the available experi-
mental data very well. The fit is however very insensitive to
the only free parameter in this model: the stall force (i.e. the
ratio between the bare on- and off-rates, given that their dif-
ference is fixed by a measurement of the growth velocity at
zero force), and no firm conclusions about the stall force can
be made [9]. One can make reasonable variations to this model
that fit the data equally well [33]. For example, the initial
‘shift’ between subsequent protofilament tips in a real mi-
crotubule is closer to one-eighth of a subunit. Also, it seems
reasonable to assume at least some interaction between neigh-
boring protofilaments. Even though there is no reason to insist
on the details of these models, the outcome of the comparison
with the experimental data might in fact suggest that the end
of a growing microtubule looks more like a irregular pointed
structure than a blunt end (under the current experimental
conditions). Instead of making explicit assumptions about the
geometrical details of the growth process, Kolomeisky and
Fisher have suggested a different approach to analyzing the
available data [10]. In a spirit similar to (5), a general form of
the force–velocity relation based on thermodynamic consider-
ations can be written down as:

V(F) = δ

n

(
kone−qFd1/kBT − koff e(1−q)Fd1/kBT )

, (6)

where n = 13 represents the number of protofilaments. Here
four parameters are free to fit: the size of the force generat-
ing length increase d1 (which for a multifilament polymer can
be less than the subunit size), the bare (microtubule) on- and
off-rates, and the distribution of the load dependence between
the on- and off-rates. Of course, reasonable fits can be ob-
tained. This expression still assumes that the on- and off-rates
are related to each other through the gain in free energy of
a simple addition of one subunit, and therefore does not take
into account the possible role of GTP hydrolysis. Also, the pa-
rameters q and d1 may in principle themselves be a function of
the force (as is effectively the case for the Mogilner and Oster
model for d1), providing an even larger set of possible fitting
parameters. Given enough experimental data this approach is
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clearly the most general, but for the moment the number of
free parameters seems too large to draw strong conclusions
from fits obtained with (6).

7 Conclusions and perspectives

The experiments on single growing microtubules
presented here provide us with a straightforward realization
of a biological thermal ratchet. They have shown us that bio-
logically significant forces (on the order of several piconew-
tons) can indeed be generated by the assembly of cytoskeletal
filaments. Comparisons with simple thermal ratchet models
should be taken with care, since the structure of a single grow-
ing microtubule is in fact quite complicated. (To make matters
worse, electron-microscopy studies of microtubules have sug-
gested that growing ends consist of sheet-like structures that
close into hollow tubes during the assembly process [34].)
Clearly, the available models that attempt to take this com-
plexity into account provide many possibilities and additional
data are desperately needed. New sets of data taken at higher
initial growth velocities than presented in Fig. 5 (see for ex-
ample Fig. 4) in fact appear to be inconsistent with the sim-
plest independent 13-ratchet model [35]. Careful analysis of
such multiple data sets should eventually teach us about the
mechanism and geometrical details of the growth process.
In addition, we hope that experiments using optical trapping
techniques will provide us with complementary information,
in particular on the stall force, narrowing down even further
the available microscopic models. From a biological point of
view, studying the forces generated in contact with an artifi-
cial glass barrier may not be all that interesting. What will be
important in the future is to repeat these types of experiments
with barriers consisting of chromosomes, kinetochore com-
plexes, or simple motor-coated surfaces. Comparison with our
current experiments may reveal important hints as to how mo-
lecular growth details and the force-generating process are
affected or even regulated by interaction with these specific
barriers.
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